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Abstract. We present simulations on pump-dump-probe experiments performed on the potassium dimer.
The interaction of two time-delayed laser pulses prepares vibrational wave packets in the electronic ground
state. The quantum calculations reveal to what extent it is possible to prepare a ground state superposition
of states with high versus low vibrational quantum numbers by changing the pump-dump delay time. It
is shown that transient signals may exhibit interference effects which are due to characteristics of ground
state wave-packets composed of two components showing different vibrational dynamics. In this way the
signals are able to yield information about vibrational overtone motion.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
33.80.Wz Other multiphoton processes

1 Introduction

The laser control of chemical reactions is subject of intense
research work and discussion [1,2]. Two control schemes
have been extensively used in theoretical and experimen-
tal studies. One is the Brumer-Shapiro scheme [3,4] which
employs two lasers with well defined frequencies and rela-
tive phases. In this way electronic transitions in molecules
can be induced where a common final state is reached via
two excitation pathways. By controlling the relative phase
between the two radiation sources one is able to induce in-
terferences, thereby enhancing or suppressing the popula-
tion of certain final states. This scenario can be compared
to a two-slit experiment where, in the control scheme, the
distance of the slits corresponds to the relative phase of
the two laser beams.

A time-dependent aspect appears in a more direct way
in the Tannor-Rice-Kosloff control scheme [5,6]. Here,
a first laser pulse prepares a non-stationary state in a
molecule. Since this wave-packet changes its location on
the potential-energy curve of the state which was ex-
cited, a second, time-delayed pulse is able to induce ef-
fective transitions to another electronic state at certain
delay times. This scheme is, in fact, not basically different
from the Brumer-Shapiro approach. In the former case we
might think of a multiple slit experiment since there are
many pathways leading from a single initial state via a
manifold of intermediate states to a final state. The var-
ious phases are determined by the time-evolution in the
intermediate state.

a e-mail: voen@phys-chemie.uni-wuerzburg.de

Recently, an exciting control experiment was per-
formed in the Gerber laboratory [7] which, employing feed-
back and evolutionary algorithms [8], showed that the idea
of coherent control indeed works in larger molecular sys-
tems. As one experimental result it was shown, that the
branching ratio of chemically different species can be con-
trolled to a large extent.

In the present study we treat the simple, but by no
means trivial, case of a diatomic molecule. The objective
is to investigate the preparation and detection of vibra-
tional ground state wave packets. In doing so we analyze
experiments on the K2 molecule which were performed re-
cently in our laboratory [9–11]. The potassium dimer has
been investigated using femtosecond time-resolved spec-
troscopy by several groups [12–15]; for the application of
a learning algorithm to the same molecule see the recent
paper by Hornung et al. [16]. The experimental set-up used
in our time resolved experiments was described before and
we will not repeat the details here. Let us, instead, discuss
the principle of the excitation and detection mechanism
regarding the scheme presented in Figure 1. A femtosec-
ond pump pulse couples the electronic ground state |g〉
and an excited state |e〉 of the molecule. Due to a high
field strength (intensities up to 10 GW/cm2 were used in
the experiment) this results in the preparation of an ex-
cited state-(|ψe〉) and a ground state-wave packet (|ψg〉).
Similar intensity effects have been found before in the Na2

[17] and also the K2 [18] molecule.
At a variable delay time τ1, a second short laser pulse

(dump pulse) is sent through the sample. The carrier fre-
quency is chosen such that it prepares a packet in the
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Fig. 1. Excitation scheme of a three pulse experiment on the
K2 molecule. The pump- and dump-pulses, which are centered
around times T1, T2 couple the electronic ground state |g〉 and
an excited state |e〉. The probe pulse, centered at time T3,
induced a three photon ionization process.

electronic ground state consisting of a coherent superpo-
sition of states with high vibrational quantum numbers.
Finally, a third laser pulse (probe) induces ionization from
the electronic ground state via a three-photon absorption
process. The possible excitation of other electronically ex-
cited states in the pump-dump process will not be dis-
cussed here, for details see references [9–11].

The experimental ionization signals exhibit traces of
wave-packet motion in the electronic ground state. In par-
ticular, vibrational frequencies corresponding to quantum
numbers of v′′ = 0, 1 and v′′ = 11−15 were found from a
Fourier analysis of the signals. The ratio of these contri-
butions could be controlled by changing the pump-dump
delay.

In this paper we want to analyze the experimen-
tal results thereby arriving at a deeper insight into the
pump-dump process and the control of the various ground
state wave-packets. The paper is organized as follows: in
Section 2 we describe the theoretical treatment of the sys-
tem and the model. The numerical results are presented
in Section 3 and 4 gives a summary.

2 Theory and model

We describe the interaction of three laser pulses with
K2 molecules, as illustrated in Figure 1. A first ultra-
short pulse (pump) couples the electronic ground state |g〉

(1Σ+
g ) with the excited state |e〉 (1Πu). A second, time-

delayed pulse (dump) of different wavelength introduces
another coupling between these two electronic states. Fi-
nally, the third pulse (probe) with yet another center
wavelength induces a three-photon ionization process. The
latter proceeds (one-photon) non-resonant via the elec-
tronic state |a〉 (1Σ+

u ) but (two-photon) resonant with
the state |s〉 (51Σ+

g ). We note that there is another state
(61Σ+

g ) which is energetically close to |s〉. Our calculations
showed that ionization signals involving this state are very
similar to the ones obtained with the |s〉 (51Σ+

g ) state so
that we feel no need to regard this second ionization path-
way in what follows. This neglection ignores interference
effects which arise from the coherent superposition of ion-
ization amplitudes resulting from the two ionization path-
ways (via the 51Σ+

g and 61Σ+
g state). However, since the

experiments involve an average over many laser shots and
are not performed with phase-locked pulses, these interfer-
ences are not detected. There are other femtosecond time-
resolved experiments which employ such interferences to
characterize the nuclear dynamics, see e.g. [19–23].

Let us first concentrate on the population transfer
which is induced by the pump- and dump-pulses. In what
follows, only the vibrational degree-of-freedom is con-
sidered. The Hamiltonian involving two electronic states
reads

H = |e〉 He 〈e|+ |g〉 Hg 〈g|
+ |e〉Weg(t) 〈g|+ |g〉Wge(t) 〈e|. (1)

Here He,g are the Hamiltonians for the nuclear motion
in |e〉, |g〉, respectively. They contain the potentials Ve,g,
as displayed in Figure 1. The light-matter interaction is
obtained within the dipole-approximation as (atomic units
are used throughout)

Weg(t) = −µeg {E1f(t− T1) cos(ω1(t− T1))
+E2f(t− T2) cos(ω2(t− T2))} · (2)

The projection of the transition dipole-moment on the
laser polarization vector is denoted as µeg. In our calcula-
tion we employ the rotating-wave-approximation. Using,
furthermore, the Condon-approximation, we set all dipole
moments to a constant value of one. The pump (i = 1)
and dump (i = 2) fields are characterized by envelope
functions f(t) centered at times Ti, a carrier frequency
ωi and a field strength Ei. The latter is set to a value
corresponding to a peak intensity of I = 2× 1010 W/cm2.

We solve the coupled equations for the vibrational mo-
tion in the two electronic states numerically using the
split-operator method [24]. Since we regard molecular
beam experiments where the dimers are produced vibra-
tionally cold, the initial state of the system is taken as the
vibrational ground state with quantum number v′′ = 0.
The same Gaussian envelope function f(t) is employed
for the pump- and dump-pulse. The width of the tem-
poral shape function is chosen such that the full-width-
at-half-maximum (FWHM) of the corresponding intensity
autocorrelation function is 70 fs.
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To simulate the pump-probe transients we calculate
signals under the following assumptions:

(a) the population in state |s〉 is proportional to the ion
signal;

(b) the two-photon non-resonant transition |s〉 ← |g〉 can
be treated as an effective one-photon transition.

The approximation (a) is reasonable since the state
|s〉 is directly coupled to the ionization continuum via the
molecule-field interaction. Assumption (b) can be justi-
fied as follows: using second-order perturbation theory, the
state in |s〉 is obtained as

|ψs(t)〉 = −
t∫

−∞

dt′ Us(t− t′) Wsa(t′)

×
t′∫

−∞

dt′′ Ua(t′ − t′′) Wag(t′′) Ug(t′′)|ψg〉. (3)

Here Un denotes the propagator in the electronic state |n〉
and the molecule-field interaction has the form

Wnm(t) = −µnm
2
E3f(t− T3)e−iω3(t−T3), (4)

where the index 3 characterizes the probe pulse and we
included only the term responsible for absorption. The
initial state |ψg〉 represents the vibrational ground state
in |g〉.

We now evaluate equation (3) using a square pulse for
f(t) starting at the delay-time t = τ2 which, for conve-
nience, will be set to zero, and ending at t = T . In doing
so, we adopt the approximation to neglect all kinetic en-
ergy operators which appear in the propagators [25–29].
This yields

|ψs(T )〉 = −E2
3

e−iVsT

4i(Va − Vg − ω3)

{
ei(Vs−Vg−2ω3)T − 1
i(Vs − Vg − 2ω3)

−ei(Vs−Va−ω3)T − 1
i(Vs − Va − ω3)

}
|µsaµagψg(0)〉 · (5)

Since in our case we have Vs−Vg−2ω3 ∼ 0, the first term
in equation (5) has the form of a resonant contribution to
the excited state |ψs(T )〉. Neglection of the second (non-
resonant) term yields

|ψs(T )〉 =
E2

3

4
e−iVsT

1
2(Va − Vg − ω3)

× ei(Vs−Vg−2ω3)T − 1
Vs − Vg − 2ω3

|µsaµagψg(0)〉 · (6)

Let us next regard a resonant one-photon transition |2〉 ←
|1〉 induced by a field of the form E(t) = (E/2)f(t)e−iωt.
The first-order state

|ψ2(t)〉 =
−1
2i

t∫
0

dt′ U2(t− t′)µ21E(t′)U1(t′)|ψg(0)〉 (7)

may be evaluated for a square pulse within the same as-
sumptions as above to obtain

|ψ2(T )〉 = E
E

2
e−iV2T

ei(V2−V1−ω)T − 1
V2 − V1 − ω

|µ21ψg(0)〉 · (8)

This expression is similar to equation (6) if the obvious
substitutions are made. A difference lies in the appear-
ance of the function (Va−Vg−ω3)−1 which is responsible
for the weak amplitude for a non-resonant multi-photon
transition. It turned out that in our case the coordinate
dependence of this function can be ignored so that, in
what follows, we set it to a constant. Within this appro-
ximation we may now return to arbitrary pulse shapes to
arrive at an approximate expression for the wave function
in |s〉 as

|ψs(t)〉 ∼ Fsg |µsaµagψg(0)〉, (9)

where F is defined as

Fsg(R) =
E2

3

4

+∞∫
−∞

dt f(t)ei(Vs(R)−Vg(R)−2ω3)t, (10)

where we have ignored phase factors of modulus one. The
transient signal S(τ2) is now evaluated in the coordinate
representation as the population in state |s〉 prepared by
the time-delayed probe pulse:

S(τ2) =
∫

dR |Fsg(R)µsaµagψg(R, τ2)|2. (11)

The interpretation of the latter equation is as follows: the
signal S(τ2) measures the probability density |ψg(R, τ2)|2
in the spatial window |Fsg(R)µsaµag|2 at the delay time
τ2. In this way, the quantum dynamics is reflected in the
measured ion yields.

3 Results

3.1 Pump-dump population transfer

We first discuss the population transfer between the
ground and excited electronic state, induced by the inter-
action with a pump- and a dump-pulse with frequencies
corresponding to 638 nm (pump) and 685 nm (dump).
Figure 2a shows the difference in the ground state pop-
ulation obtained in the case when both pulses interact
(Pg(p/d)) and in the case when only the pump pulse is
present (Pg(p)) as a function of delay time τ1 = T2 − T1.
The curve shows that at certain delay-times the dump-
pulse is able to transfer about 20% of the total population
into the ground electronic state. A periodic variation with
a period of 460 fs is obtained. This is obviously due to the
vibrational motion of the excited state wave packet ψe as
illustrated in Figure 2b. This figure displays the bond-
length expectation value 〈R〉t in the state |e〉. A compari-
son with the population (Fig. 2a) shows that each time the
|e〉-state wave packet is located around the outer turning
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Fig. 2. Panel (a): difference in the ground state population
created by the interaction with the pump- and dump-pulse
(Pg(p/d)) and the population obtained for the pump-pulse in-
teraction (Pg(p)). The curve is shown as a function of the delay
time τ1 between the pulses. Panel (b) contains the bond-length
expectation-value in the electronically excited state |e〉, calcu-
lated at time τ1. Panel (c): difference between the potentials in
the states |e〉 and |g〉, reduced by the dump-pulse frequency and
calculated at the expectation value as displayed in panel (b).

point of its vibrational motion, the population transfer to
the ground state is most effective. This was also concluded
from the experimental results [9–11].

Using similar arguments as presented in Section 2, the
ground state population created in the dump process can
be approximately written as

Pg(τ1) ∼
∫

dR |Feg(R)µegψe(τ1)|2, (12)

with the Franck-Condon window defined as

Feg(R) =
E2

2

∫
dt f(t)e−i(Ve(R)−Vg(R)−ω2)t. (13)

The FC-window Feg(R) has its maximum at a distance
where the difference potential Deg(R) = Ve(R) − Vg(R)
equals the laser carrier frequency ω2. Thus the maximal
population transfer is to be expected at times when the
|e〉-state wave packet is located within the window. This
is illustrated in Figure 2c which shows the function

Deg(〈R〉t)− ω2. (14)

As expected, the minima (being close to zero) of this func-
tion coincide with the maxima of the ground-state popu-
lation.

It is interesting to analyze the ground-state distribu-
tion of vibrational states |ϕv′′〉 after the pump-dump pro-

0 2 4 6 8 10 12 14 16
v"
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0.6

P (v")g

Fig. 3. Ground state vibrational distribution, obtained after
the pump- and dump-pulse interaction for a delay time of τ1 =
240 fs. The 638 nm pump pulse populates states with lower
quantum numbers, whereas the dump pulse (685 nm) excites
higher states in |g〉 at the time when the |e〉-state wave packet
is located around the outer turning point of its vibrational
motion.

cess. This distribution, defined as

Pg(v′′) =
|〈ϕv′′ |ψg〉|2
〈ψg|ψg〉

, (15)

is displayed in Figure 3 for a pump-dump delay of τ1 =
240 fs. One clearly distinguishes a cold distribution con-
sisting mainly of the vibrational levels with quantum num-
bers v′′ = 0, 1 and a hot distribution with quantum
numbers between 9 an 14. The latter contribution is pre-
pared by the interaction with the dump-pulse which ac-
cesses higher energies within the ground-state potential.
The particular structure of the vibrational distribution al-
lows for a decomposition of the ground state wave packet
into a cold (|ψgc〉) and hot (|ψgh〉) part as

|ψg(t)〉 = |ψgc(t)〉 + |ψgh(t)〉· (16)

The vibrational dynamics of |ψg(t)〉 is now investigated by
time-delayed ionization which is the subject of the next
subsection.

3.2 Transient ion signals

We now turn to the calculated transient signals which
were obtained within the approximations as discussed
in Section 2. Figure 4 displays signals calculated using
|ψgc(t)〉 (panel (a)), |ψgh(t)〉 (panel (b)) and the coher-
ent sum |ψg(t)〉 (panel (c)) as initial state for the probe
process. The time-origin corresponds to the maximum of
the pump-pulse envelope-function. The pump-dump delay
was set to 240 fs and a 35 fs probe pulse with a carrier
wavelength of 762 nm was employed in the calculation.
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Fig. 4. Calculated pump-dump-probe signals as a function
of delay time between the pump- and probe-pulse. The pump-
dump delay τ1 was set to 240 fs and wavelengths of 638 nm
(pump), 685 nm (dump) and 762 nm (probe) were employed.
The signals are obtained for ionization from the initial state
|ψgc〉 (cold contribution, panel (a)), |ψgh〉 (hot contribution,
panel (b)) and from the total ground state |ψg〉 = |ψgc + |ψgh〉
total signal, panel (c)).

The signal originating from the cold ground state wave-
packet exhibits a small periodic variation on a large back-
ground (note that the vertical axis in Fig. 4a does not
start at a value of 0). Since |ψgc(t)〉 is a linear combi-
nation of very few eigenstates with low quantum num-
bers, it does not move much on the ground state poten-
tial. As a consequence, most of the probability amplitude
remains in the Franck-Condon window, which is located
close to the potential minimum of Vg(R), giving rise to
a large background signal. Nevertheless, a dynamical be-
havior can be deduced from the figure, taking place with
a period of 366 fs. The double-peak structure occurs since
during one vibrational period the Franck-Condon region
is filled twice.

The signal obtained from a probe-excitation with ini-
tial state |ψgh(t)〉 (Fig. 4b) does not exhibit a background
and oscillates with a period of 388 fs. Furthermore this
signal is identical to zero for times before the dump pulse
interacts with the sample.

From the temporal variation of the signal we may cal-
culate vibrational wave numbers of 90 cm−1 and 85 cm−1,
corresponding to the motion of |ψgh(t)〉 and |ψgc(t)〉, re-
spectively. This is consistent with the experimental find-
ings taking the slightly different excitation wavelengths
into account [10].

Since the total signal results from a coherent superpo-
sition of the amplitudes obtained from the two ionization
pathways (using the wave packets |ψgc(t)〉, |ψgh(t)〉 as ini-
tial states), it exhibits interference patterns. The latter are
easily understandable using an eigenfunction expansion of

the wave packets as

|ψgn(t)〉 =
∑
n

ane−iεnt|ϕn〉, (17)

where n = h, c. Inserting equation (17) into the expression
for the signal (Eq. (11)) one obtains

S(τ2) =
∫

dR |Fsg(R)µsaµag|2

× {|ψgh(R, τ2)|2 + |ψgc(R, τ2)|2 + Shc(R, τ2)}, (18)

where the interference term is of the form

Shc(R, τ2) = 2Re
∑
h,c

ei(εh−εc)τ2a∗hacϕ
∗
h(R)ϕc(R). (19)

The corresponding oscillation period can thus be related
to the energy difference between the vibrational energies of
the two ground state wave packets. Taking the value cor-
responding to ε12−ε0 yields a time of 31 fs which matches
the separation of the fast oscillations in the signal.

The above mentioned fast oscillations have not been
seen in the experiment which, due to the temporal width
of the probe pulse, is expected. If the motion of the wave-
packets during the probe transition is included in the the-
oretical description or a longer probe pulse is employed,
these features are washed out. Nevertheless here we en-
counter an interesting effect which shows that higher over-
tone motion in the ground electronic state can, in prin-
ciple, be detected via the discussed pump-dump-probe
scheme.

4 Summary

We have analyzed pump-dump-probe experiments on the
potassium dimer. Employing time-dependent quantum
calculations we were able to confirm conclusions inferred
from experimentally detected transient ionization signals.
The interaction of a first laser pulse prepares a wave packet
in an electronically excited state of the molecule. Using a
second, time-delayed pulse, it is possible to transfer popu-
lation back into the electronic ground state. The efficiency
of this dump-process depends, for a fixed dump-frequency,
on the delay time between the two pulses. An appropriate
choice of this time allows for the preparation of a super-
position of states with high vibrational quantum numbers
(hot contribution). The time-resolved ionization signals
then reflect periodicities corresponding to the wave packet
created in the dump process additionally to a (cold) wave
packet consisting of a sum of vibrational states with small
quantum numbers which is prepared in the pump process.

In calculating the signals we found that they exhibit
interference structures. The latter stem from the two con-
tributions to the ion signals which originate from ioniza-
tion of the two ground-state wave packets (cold/hot). In
this way one is able to see traces of vibrational overtone
motion which, however, due to their high frequency are
difficult to detect. To our knowledge this effect was never
observed in neither a calculation nor an experiment.
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